
Chapter 4

Time-dependent
perturbation theory

4.1 The Fermi golden rule

We said that the best way to find out the evolution of quantum states
in time is to solve for the eigenstates of the Hamiltonian. However,
as we discussed earlier, most Hamiltonians are not amendable to exact
diagonalization. In chapter two we have discussed perturbative method
to find the eigen-solutions of

H = H0 + V (4.1)

when V is weak.

In this chapter we deal with perturbative method to find the time
evolution operator of Eq. (4.1) directly. Let us first focus on the case
where V is time independent. The time evolution operator is given by

e−i t
h̄
(H0+V ). (4.2)

To obtain an approximate expression for the time evolution operator
when V is weak one might think of an expansion as follow

e−i t
h̄
(H0+V ) =

∑

n

1

n!

(

−it

h̄

)n

(H0 + V )n. (4.3)
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In order to obtain O(V ) term one might think of expanding (H0 +V )n.
However since

[H0, V ] 6= 0 (4.4)

in general the O(V) expansion of (H0 + V )n is not simply nV Hn−1
0 .

Rather we have to keep n terms of different ordering

V Hn−1
0 + H0V Hn−2

0 + H2
0V Hn−3

0 + ... (4.5)

A easier way to obtain an O(V) expansion of the time evolution operator
is to break it into many infinitesimal pieces:

e−i t
h̄
(H0+V ) =

[

e−i ǫ
h̄
(H0+V )

]N

= e−i ǫ
h̄
(H0+V )...e−i ǫ

h̄
(H0+V )e−i ǫ

h̄
(H0+V ) (4.6)

where

Nǫ = t. (4.7)

Now for each e−i ǫ
h̄
(H0+V ) we can expand to O(ǫ) as follows1

e−i ǫ
h̄
(H0+V ) ≈ e−i ǫ

h̄
H0 e−i ǫ

h̄
V ≈ e−i ǫ

h̄
H0

(

1 − i
ǫ

h̄
V

)

. (4.10)

Substitute the above result into Eq. (4.6) we obtain

e−i t
h̄
(H0+V ) = e−i t

h̄
H0 − iǫ

h̄

N
∑

j=1

[

e−i ǫ
h̄

H0

]N−j
V

[

e−i ǫ
h̄

H0

]j
. (4.11)

As ǫ → 0 the above expression approaches

e−i t
h̄
(H0+V ) = e−i t

h̄
H0 − i

h̄

∫ t

0
dτe−

i
h̄
(t−τ)H0 V e−

i
h̄

τH0 . (4.12)

1In general

eAeB 6= eA+B . (4.8)

The equality holds only when [A,B] = 0. However even when [A,B] 6= 0

eǫAeǫB = eǫ(A+B) (4.9)

to O(ǫ) because [ǫA, ǫB] = O(ǫ2).
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Eq. (4.12) form the basis of the first order time dependent perturbation
theory.

Suppose at time 0 the system is in the eigenstate |i〉 of H0 (H0|i〉 =
ǫi|i〉). Question: at time t what is the probability that the system made
a transition to eigenstate |f〉 of H0? The probability amplitude of this
transition is given by

Afi = 〈f |e−i t
h̄

H0|i〉 − i

h̄

∫ t

0
dτ〈f |e− i

h̄
(t−τ)H0 V e−

i
h̄

τH0|i〉

= e−iǫit/h̄δfi −
i

h̄

∫ t

0
dτe−

i
h̄
(t−τ)ǫf 〈f |V |i〉e− i

h̄
τǫi . (4.13)

For the case of different initial and final states we have

Afi(t) = − i

h̄

∫ t

0
dτe−

i
h̄
(t−τ)ǫf 〈f |V |i〉e− i

h̄
τǫi . (4.14)

The transition probability is

Pfi(t) = |Afi(t)|2 =
1

h̄2

∣

∣

∣

∫ t

0
dτe

i
h̄

τǫf 〈f |V |i〉e− i
h̄

τǫi

∣

∣

∣

2

=
1

h̄2

∣

∣

∣

∫ t

0
dτe

i
h̄

τ(ǫf−ǫi)〈f |V |i〉
∣

∣

∣

2
. (4.15)

Using Eq. (4.15) we can rewrite Pfi(T ) as

Pfi(T ) =
1

h̄2 |〈f |V |i〉|2
∫ T

0
dτ

∫ T

0
dτ ′e

i
h̄
(τ−τ ′)(ǫf−ǫi). (4.16)

We can change the integration variable to

τ+ = τ + τ ′ τ− = τ − τ ′ (4.17)

and rewrite Eq. (4.18) as

Pfi(T ) =
1

2h̄2 |〈f |V |i〉|2
∫ 2T

0
dτ+

∫ T

−T
dτ−e

i
h̄

τ−(ǫf−ǫi). (4.18)

Since the integrand in Eq. (4.18) does not depend on τ+ we have

Pfi(T ) =
T

h̄2 |〈f |V |i〉|2
∫ T

−T
dτ−e

i
h̄

τ−(ǫf−ǫi), (4.19)
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Thus the transition probability grows linearly with the waiting time t.
The transition rate is given as

Wfi =
Pfi(T )

T
. (4.20)

Using the above result we obtain

Wfi =
1

h̄2 |〈f |V |i〉|2
∫ T

−T
dτ−e

i
h̄

τ−(ǫf−ǫi). (4.21)

One convenient way of performing the integral in Eq. (4.21) is to intro-
duce a cutoff factor e−γ|t| (γ = 1/T ) into the time integral of Eq. (4.21)
and rewrite Eq. (4.21) as follow

Wfi =
1

h̄2 |〈f |V |i〉|2
∫ ∞

−∞
dτ−e−γ|t|e

i
h̄

τ−(ǫf−ǫi)

=
1

h̄2 |〈f |V |i〉|2 2γ

γ2 + (ǫf − ǫi)2/h̄2

=
2π

h̄
|〈f |V |i〉|2 1

π

Γ

(ǫf − ǫi)2 + Γ2
, (4.22)

where

Γ = h̄γ. (4.23)

The function

∆Γ(ǫf − ǫi) =
1

π

Γ

(ǫf − ǫi)2 + Γ2
(4.24)

is call the Lorentzian. It has the property that
∫ ∞

−∞
∆Γ(ǫ)dǫ = 1 (4.25)

and that

lim
Γ→0

∆Γ(ǫf − ǫi) → δ(ǫf − ǫi). (4.26)

Thus we have

Wfi =
2π

h̄
|〈f |V |i〉|2∆Γ(ǫf − ǫi). (4.27)
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Eq. (4.27) is the famous Fermi golden rule. Two things needs to be
said about Eq. (4.27).

The meaning of Γ

It is important to clarify the meaning of Γ in Eq. (4.27). We recall
that Γ is proportional to γ which is the inverse of the time we use to
compute the average transition probability, or the transition rate. An
immediate question is what value of γ should we use?

Let us answer this question by considering an explicit example -
the decay of an excited state of a atom. Imagine that you have solved
the atomic eigenvalue problem and have obtained all the exact eigen
energies and eigen wavefunctions of an atom. Suppose the atom is
absolutely isolated from everything else in the universe, then if it is
in an excited state at time zero, it will stay there forever. However,
an absolutely isolated atom does not exist ! As you have learned, light
originates from “electromagnetic oscillation”, or as commonly put, elec-
tromagnetic wave. Photons are the quanta of the electromagnetic os-
cillation. In an absolute dark space, the electromagnetic oscillators are
in their ground state. However in quantum mechanics an oscillator will
have zero-point oscillation even in the ground state. It turns out that
this zero point oscillation is sufficient to cause an atom to decay. Such
a decay rate can be computed using Eq. (4.27) where the perturba-
tion, V , is the interaction between the atom and the electromagnetic
oscillators. However, in reality the atom interacts with more things
than just the electromagnetic field. For example, suppose the atom in
question is one out of many atoms in a atomic gas. Atomic collisions
can also cause the atom to decay from its excited state. If our pur-
pose is to understand the decay rate caused by the interaction between
an atom and the electromagnetic field, the collision-induced decay is
not what we are interested in. How do we remove such complication
from our consideration? Suppose the collision causes a finite life time
T for the atomic excited state. Such a life time becomes longer as
the density of the gas becomes smaller.2 Imagine that we compute the
electromagnetic-induced transition probability. Suppose the atom is in

2Because the probability of atomic collision goes down as the density goes down.
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the excited state at time zero. As time elapses, both the interaction
with the electromagnetic field and atomic collision can induce decay.
However at time much smaller than the life time T discussed above,
the effect of atomic collision can be ignored. In other words for t < T
we can ignore the presence of atomic collision to a good approximation.
In this case the γ we should use in Eq. (4.23) is 1/T !

The above example illustrate where Γ comes from. In general the
Hamiltonian we use to describe a quantum system is only an approxi-
mate. This is because inevitably such a system interact with the envi-
ronment. Such interaction causes a finite life time for the eigenstates.
The Γ we should use in Eq. (4.27) is the inverse of such life time.

After understanding the meaning of Γ in Eq. (4.27) you probably
also realized that it is a quantity that is difficult to estimate.3

“Approximate energy conservation”

The function ∆Γ(ǫf − ǫi) in Eq. (4.27) has the effect of suppressing
the transition rate unless

|ǫf − ǫi| < Γ. (4.28)

Thus for very small Γ it imposes the condition of approximate energy
conservation. You might ask how can it imposes only an approximate
energy conservation? is’nt energy exactly conserved? Indeed, energy
is exactly conserved, as long as you include the environment in the
consideration. In Eq. (4.27) the energy does not include that of the
environment. The fact that energy is only approximately conserved
simply reflects the fact that there can be energy exchange between the
system of interest and the environment.

When to use the delta-function version of Eq. (4.27)?

In the text books we often regard ∆Γ(ǫf − ǫi) as a delta function.
This replacement assumes that the life time causes by the environment
is infinite. In that limit, transition can only occurs when the initial

3In order to estimate Γ we need to have detailed information of how a given
system interact with the environment.
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and final state energy are exactly the same. You might wonder how
can this happen since in most microscopic quantum system the energy
levels are discrete. In that case does’nt Eq. (4.27) give a non-sensible
answer, namely the transition rate is either zero or infinity?4

Indeed, in the limit of Γ → 0 sensible application of Eq. (4.27) is
restricted to the cases where the final state spectrum is continuous,
or more precisely, the spacing between energy levels is smaller than Γ.
For example, the spectrum of free particle in a box becomes continuous
when the size of the box approaches infinity. So when we use the delta
function version of Eq. (4.27) we always have in mind the following
sequence of limits:

Box size → 0 first , Γ → 0 second. (4.29)

Now we are ready to discuss some examples where we apply
Eq. (4.27).

4.2 Simple scattering theory

In this section we apply Eq. (4.27) to study the scattering of free particle
plane waves by a localized potential. The Hamiltonian we shall study
is of the following generic form

H = − h̄2

2m
∇2 + V (r). (4.30)

Here the potential is localized in the sense that it is non-zero in a
finite spatial region. The question we are interested in is what is the
probability per unit time, i.e., transition rate that a incident plane wave
with wavevector ki will be scattered in to wavevectors fall within an
solid angle dΩ around kf (see Fig. (4.1)). According to Eq. (4.27) the
transition rate dW is given by5

dW =
2π

h̄

∫

k−kf∈dΩ

d3k

(2π/L)3
|〈k|V |ki〉|2δ(ǫ(k) − ǫ(ki)). (4.31)

4Infinity occurs when there is degeneracy where ǫf = ǫi.
5The notation dW reminds us the fact that the transition rate is proportional

to dΩ.
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In the above, L is the linear dimension of a box within which the
entire system is contained. The

∫

d3k/(2π/L)3 simply reflect that under
the boundary condition imposed by the box wall there k vectors are
quantized as

k =
2π

L
(n1, n2, n3). (4.32)

In Eq. (4.31) the matrix element 〈k|V |ki〉 is given by

〈k|V |ki〉 =
1

L3

∫

d3rei(ki−k)·rV (r) =
1

L3
V (k − ki). (4.33)

Here the 1/L3 prefactor originates from the normalization of the plane
wave, and V (k) is the Fourier transform of V (r). In the case that V (r)
is spherically symmetric, we expect V (k − ki) to depends only on the
modulus of k − ki, i.e.,

V (k − ki) = V (|k − ki|). (4.34)

The quantity |k − ki| is given by

|k − ki| = (k2 + k2
i − 2kki cos θ)1/2. (4.35)

Here θ is the angle between k and ki. On the other hand, the energy
delta function in Eq. (4.31) is given by

δ(ǫ(k) − ǫ(ki)) = δ
( h̄2k2

2m
− h̄2k2

i

2m

)

=
m

h̄2ki

δ(k − ki). (4.36)

Put these together with Eq. (4.31) we have

dW =
1

(2π)2L3

m

h̄3ki

∫

dΩ
sin θdθdφ

∫

k2dk
∣

∣

∣V (
√

k2 + k2
i − 2kki cos θ)

∣

∣

∣

2
δ(k − ki)

=
1

(2π)2L3

mki

h̄3 dΩ
∣

∣

∣V
(

√

2k2
i (1 − cos θ)

)
∣

∣

∣

2
. (4.37)

The differential cross-section
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Figure 4.1:

Imagine shooting classical marbles against a hard sphere scatterer.
We expect that each particle to be scattered to a different angle, de-
pending on their detailed impact information. In general if the crossec-
tional area of the scatterer intercepting the incoming “marble beam”
is σ then the number of particle that will be scattered per unit time is
given by

σ × incoming particle flux. (4.38)

This is the total scattered particle number in an unit time interval, it
includes particles scattered into all possible directions. If we ask per
unit time how many particle is scattered into a solid angle dΩ around
a particular direction we will get an answer which is proportional to
dΩ and constitutes a small fraction of Eq. (4.38). In the literature we
often define the differential cross-section as

dσ =
# of particles scattered into dΩ around a given direction

incoming particle flux
.(4.39)

since the numerator of Eq. (4.40) is proportional to dΩ we define

dσ

dΩ
=

# of particles scattered into dΩ around a given direction

incoming particle flux × dΩ
.(4.40)
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The above classical consideration motivates us to compute the dif-
ferential cross-section from Eq. (4.37). Since the incoming particle is
in a plane wave state, its associated flux is given by

f =
1

L3
vi =

1

L3

h̄ki

m
. (4.41)

Divide Eq. (4.37) by the above result we obtain

dσ =
mL3

h̄ki

1

(2π)2L3

mki

h̄3 dΩ
∣

∣

∣V
(

√

2k2
i (1 − cos θ)

)
∣

∣

∣

2

=
( m

2πh̄2

)2
dΩ

∣

∣

∣V
(

√

2k2
i (1 − cos θ)

)
∣

∣

∣

2
, (4.42)

or equivalently

dσ

dΩ
=

( m

2πh̄2

)2∣
∣

∣V
(

√

2k2
i (1 − cos θ)

)∣

∣

∣

2
. (4.43)

Since energy conservation requires

|kf | = |ki| (4.44)

it can be shown easily that

√

2k2
i (1 − cos θ) = |kf − ki| = |q| (4.45)

where q, the wavevector transfer is defined as

q = kf − ki. (4.46)

In terms of the wavevector transfer Eq. (4.43) reduces to

dσ

dΩ
=

( m

2πh̄2

)2|V (q)|2. (4.47)

Eq. (4.47) clearly tells us that by measuring the differential cross-
section we are learning information about the Fourier transform of the
scattering potential. Thus scattering experiment is an important means
to study the properties of the scatterer.
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It is useful to analyze the dimension of the differential cross-section.
First the Fourier transform of the potential has dimension energy×L3

Thus the unit of dσ
dΩ

is

[ dσ

dΩ

]

=
( m

2πh̄2

)2 × energy2 × length6. (4.48)

Since

[ m

2πh̄2 × length2
]

=
1

energy
(4.49)

we have

[ dσ

dΩ

]

= length2. (4.50)

Example: scattering by the Yukawa potential

The Yukawa potential is of the form

V (r) = g2 e−κr

r
. (4.51)

It is obvious that Yukawa potential is a central potential, i.e., spher-
ically symmetric. At short distances (r << κ−1) it is the same as
the Coulomb potential. At long distances it falls off to zero exponen-
tially rather than algebraically. This potential could arise from, e.g.,
the screened Coulomb potential of a foreign charge in a metal. It is
straightforward to show that

V (q) =
4πg2

q2 + κ2
. (4.52)

As a result, the differential cross-section caused by the Yukawa potential
is given by

dσ

dΩ
=

( m

2πh̄2

)2( 4πg2

q2 + κ2

)2
. (4.53)
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Eq. (4.53) has two interesting limits.

For q << κ Eq. (4.53) approaches

dσ

dΩ
=

( m

2πh̄2

)2(4πg2

κ2

)2
. (4.54)

You will be asked to show in the homework that this has the same form
as the differential cross section due to a delta function potential.

In the opposite limit q >> κ we have

dσ

dΩ
=

( m

2πh̄2

)2(4πg2

q2

)2
, (4.55)

which is the differential cross-section due to Coulomb potential.

4.3 Elastic scattering by a target with in-

ternal degrees of freedom

In this section we work out the case where the target has internal
degrees of freedom. In particular let us consider a target which is made
up of N particles. Let ri, ...rN be the coordinate of this particles and
let Htarget be the Hamiltonian describing the dynamics of them. The
total Hamiltonian is given by

H = − h̄2

2m
∇2 + Htarget +

N
∑

j=1

U(r − rj). (4.56)

Here r is the coordinate of the projectile and we have assumed that the
interaction between the projectile and the target particles are identical
for j = 1, ..., N . In the absence of the last term, the eigenfunction
of Eq. (4.56) is the product of plane waves for the projectile and the
eigenfunction of the target particles:

eik·r

√
L3

× Φα(r1, ..., rN). (4.57)
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Here α labels the eigenfunctions of the target particles. Elastic scatter-
ing is a process in which the projectile is scattered from ki to around
kf while the target particles remain in their ground state

Φ0(r1, ..., rN) (4.58)

before and after the scattering. In this case we can use Eq. (4.31) with

〈k|V |ki〉 → 〈k|〈Φ0|
N

∑

j=1

U(r − rj)|Φ0〉|ki〉, (4.59)

and

δ(ǫ(k) − ǫ(ki)) → δ(E0 + ǫ(k) − E0 − ǫ(ki)), (4.60)

where E0 is the ground state energy of the target particles. The right
hand side of Eq. (4.59) is equal to

〈k|Veff (r)|ki〉, (4.61)

where

Veff (r) =
∫

d3r1...d
3rNΦ∗

0(r1, ..., rN)
N

∑

j=1

U(r − rj)Φ0(r1, ..., rN).(4.62)

Repeating the deprivation of the last section we obtain

dσ

dΩ
=

( m

2πh̄2

)2|Veff (q)|2. (4.63)

The Veff (q) into Eq. (4.63) is given by

Veff (q) =
∫

d3re−iq·r
∑

j

〈Φ0|U(r − rj)|Φ0〉

= U(q)
∑

j

〈Φ0|eiq·rj |Φ0〉

= U(q)
∑

j

∫

d3r1...d
3rN eiq·rj |Φ0(r1, ..., rN)|2

= U(q)S(q). (4.64)
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Here

S(q) =
∑

j

∫

d3r1...d
3rN eiq·rj |Φ0(r1, ..., rN)|2 (4.65)

is called the structure factor of the target. To understand the physical
meaning of S(q) we note that

ρ(r) =
∑

j

δ(r − rj) (4.66)

is the total density operator of target particles. The ground state ex-
pectation value of ρ(r) is given by

ρ̄(r) = 〈Φ0|ρ(r)|Φ0〉 =
∫

d3r1...d
3rN

∑

j

δ(r − rj)|Φ0(r1, ..., rN)|2.

(4.67)

The structure factor is the Fourier transform of ρ̄(r), namely,

S(q) =
∫

d3re−iq·rρ̄(r). (4.68)

Using Eq. (4.67) it is simple to prove that S(q) is given by Eq. (4.65).
Thus for elastic scattering by target with internal degrees of freedom
we have

dσ

dΩ
=

( m

2πh̄2

)2 |U(q)|2 |S(q)|2. (4.69)

Thus the elastic scattering cross section contains information about the
interaction potential between the projectile and the target particles,
U(r), as well as the ground state distribution of the target particles.

4.4 Inelastic scattering by a target with

internal degrees of freedom

In the previous section we assumed that the before and after the scat-
tering the target particles remain in their ground state. In this section
we allow the target to be excited after the scattering process. Thus

eiki·r

√
L3

× Φ0(r1, ..., rn) (4.70)
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is the initial state and

eik·r

√
L3

× Φα(r1, ..., rn) (4.71)

is the final state.6 In this case we can use Eq. (4.31) with

〈k|V |ki〉 → 〈k|〈Φα|
N

∑

j=1

U(r − rj)|Φ0〉|ki〉, (4.72)

and

δ(ǫ(k) − ǫ(ki)) → δ(Eα + ǫ(k) − E0 − ǫ(ki)) = δ(∆α + ǫ(k) − ǫ(ki)),

(4.73)

where ∆α = Eα − E0 is the excitation energy of the αth target state.
The right hand side of Eq. (4.72) is equal to

〈k|Veff (r)|ki〉, (4.74)

where

Veff (r) =
∫

d3r1...d
3rNΦ∗

α(r1, ..., rN)
N

∑

j=1

U(r − rj)Φ0(r1, ..., rN).(4.75)

The scattering rate where the momentum of the exiting projectile is
within dΩ of kf is

dW =
2π

h̄

∫

k̂−n̂∈dΩ

d3k

(2π/L)3
|〈k|Veff |ki〉|2δ(ǫ(k) + ∆α − ǫ(ki))

=
2π

h̄

L3

(2π)3
dΩ

∫

k2dk|〈k|Veff |ki〉|2
m

h̄2kα

δ(k − kα)

=
2π

h̄

L3

(2π)3

mkα

h̄2 dΩ|Veff (qα)|2. (4.76)

In the above

kα =

√

k2
i −

2m∆α

h̄2 , (4.77)

6Again, k lies in a solid angle dΩ around certain direction n̂.
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and

qα = kαn̂ − ki. (4.78)

The differential cross section is given by

dσ

dΩ
=

dW
1

L3

h̄ki

m
dΩ

=
( m

2πh̄2

)2kα

ki

|Veff (qα)|2 (4.79)

Similar to the elastic scattering case, we can easily prove that

Veff (qα) = U(qα)S∗(qα), (4.80)

where

S∗(qα) =
∫

d3r1...d
3rNΦ∗

α(r1, ..., rN)
(

∑

j

e−iqα·rj

)

φ0(r1, ..., rN).(4.81)

Put everything together we have, for inelastic scattering,

dσ

dΩ
=

(kα

ki

)( m

2πh̄2

)2|U(qα)|2|S∗(qα)|2. (4.82)

4.5 The decay of an excited

atom:spontaneous emission

Consider an hydrogen atom enclosed in a cubic box of linear dimension
L. The quantum mechanical degrees of freedom in this box involves the
electrons in the atom,7 and the harmonic oscillators associated with the
electromagnetic field in the box. The electromagnetic waves represent
the oscillation of the electric and magnetic fields. Due to the boundary
condition of the box, the allowed wave vectors of the EM wave are

k =
2π

L
(n1, n2, n3). (4.83)

7We shall assume the nucleus of the atom is fixed at the center of the box.
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Associated with each allowed wave vector the EM wave can have two
mutually orthogonal ploarizations8 which are orthogonal to k

ǫk · k = 0. (4.84)

In classical E&M each of the allowed component of the electromag-
netic wave is an normal mode of the electromagnetic oscillation in the
box. In quantum mechanics each of these normal mode is a quantum
simple harmonic oscillator (with the magnetic/electric fields play the
role of x/p respectively). The Hamiltonian that describes the quantum
electromagnetic oscillation inside the box is given by

HEM =
∑

k

∑

α

h̄ωk

(

a†
kαakα +

1

2

)

. (4.85)

Here a†
kα creates a photon with wave vector k and polarization α, and

ωk = c|k|. (4.86)

Now let us come to the quantum mechanical description of the atom.
In earlier part of quantum mechanics we have learned how to write down
the Hamiltonian and eigen energies and eigen functions for the H-atom.
As we have learned, H-atom has infinite many eigenstates. In this part
of the lecture we shall simplify it by keeping only two energy levels, the
ground state 2S1/2 and one of the first excited state9 2P1/2. Under this
simplifying assumption the atom is described by

Ha = E1|e〉〈e| + E0|0〉〈0|. (4.87)

Here |0〉 and |e〉 represent the ground and excited states and E0,1 are
their respective eigen energies.

8The polarization of the electromagnetic wave represent the direction of the oscil-
lating electric field. The direction of the oscillating magnetic field is perpendicular
to the electric field. The electric and magnetic field oscillate out of phase analogous
to the out-of-phase oscillation of the position and momentum of a simple harmonic
oscillator.

9The reason we throw other first excited state away is because there is a “selection
rule” that forbid them to decay to the ground state by emitting photon.
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Thus if we ignore the interaction between the electromagnetic oscil-
lation and the electron in the atom we have the following total Hamil-
tonian

H0 = HEM + Ha =
∑

k

∑

α

h̄ωk

(

a†
kαakα +

1

2

)

+ E1|e〉〈e| + E0|0〉〈0|.

(4.88)

The eigenstates of Eq. (4.88) are the direct product of the eigenstates
of Ha and HEM :

|σ, {nkα}〉 = |σ〉 ⊗ |nkα〉. (4.89)

Here |σ〉 = |0〉 or |e〉 and

a†
kαakα|{nkα}〉 = nkα|nkα〉. (4.90)

The state |{nkα}〉 should be interpreted as having nkα photons with
wave vector k and polarization ǫkα.

The interaction between the electromagnetic field and the atomic
electrons is given by

V = −er · E. (4.91)

Here r is the position operator of the electron and E is the electric field
at the position of the atom. When represented in the basis |0〉 and
|e〉 the operator er becomes a two by two matrix with vector matrix
elements:

er →
(

0 p
p 0

)

. (4.92)

The reason that the direct matrix element is zero is as follow. Since
the upon spatial inversion (i.e. r → −r) the H-atom Hamiltonian
is invariant, the eigenstates of Ha are simultaneous eigenstates of the
spatial inversion operator PI . Thus

PI |0〉 = λ0|0〉
PI |e〉 = λe|e〉. (4.93)
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Since P 2
I = identity (hence PI = P−1

I ),

λ0,e = ±1. (4.94)

Now let us consider the matrix element 〈0|er|0〉. Clearly

〈0|er|0〉 = 〈0|PIP
−1
I erP−1

I PI |0〉
= λ2

0〈0|P−1
I erP−1

I |0〉 = 〈0|PIerP
−1
I |0〉 = −〈0|er|0〉. (4.95)

Here we have used the fact that upon spatial inversion er → −er.
Eq. (4.95) implies 〈0|er|0〉 = 0. Similar proof goes for 〈e|er|e〉 = 0.
Eq. (4.92) implies that

V = −E · p (|e〉〈0| + |0〉〈e|) . (4.96)

It takes some learning in quantum electrodynamics to show that

E =
g√
L3

∑

kα

√
ωkǫkα(akα − a†

kα). (4.97)

Here g is a constant.10 Since it is beyond the scope of this course to
derive that we simply take this as given.11 Thus the complete Hamil-
tonian that describes the quantum electrodynamics of a two-level atom
is given by

HQED = H0 + V

=
∑

k

∑

α

h̄ωk

(

a†
kαakα +

1

2

)

+ E1|e〉〈e| + E0|0〉〈0|

− g√
L3

[

∑

kα

√
ωk(ǫkα · p)(akα − a†

kα)

]

(|e〉〈0| + |0〉〈e|) .

(4.98)

What we shall do is to treat the last term of HQED as a perturbation
and calculate the transition rate for the atom to decay from |e〉 to |0〉
by emitting a photon. Fermi golden rule implies that

W =
2π

h̄

∑

{nkα}

|〈0, {nkα}|V |e, {0}〉|2δ(E1 −
∑

kα

nkαh̄ωk − E0). (4.99)

10g can be shown to be −i
√

h̄/2
11One interesting thing is to note that the relation between the electric field and

a†
kα and akα is similar to that between the momentum operator p and a†, a in simple

harmonic oscillator.
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Using the expression of V in Eq. (4.98) we obtain

W =
2π

h̄

|g|2
L3

∑

kα

(p · ǫkα)2ωk|〈0, {0, 0, .., 1, 0, .., 0}|(akα − a†
kα)

× (|e〉〈0| + |0〉〈e|) |e, {0}〉|2δ(h̄ωk − ∆).

(4.100)

In Eq. (4.100) {0, 0, .., 1, 0, .., 0} denotes the EM state in which there
is one photon present in mode k, α. The reason that we only need
to consider one-photon final state is because V contains at most one
photon creation operator. This photon can have any momentum k and
polarization as long as the energy conservation

h̄ωk = ∆ ≡ E1 − E0 (4.101)

is satisfied. Simple computation gives

W =
2π

h̄

|g|2
L3

∑

kα

ωk(p · ǫkα)2δ(h̄ωk − ∆). (4.102)

Let θk be the angle between p and k it is straightforward to prove that

2
∑

α=1

(p · ǫkα)2 = |p|2 sin2 θk. (4.103)

Use the above result in Eq. (4.102) we obtain

W =
2π

h̄

|g|2
L3

∫ d3k

(2π/L)3
(ck)|p|2 sin2 θkδ(h̄ck − ∆)

=
2π

h̄

c|g|2|p|2
8π3

∫

dΩk sin2 θk

∫ ∞

0
dkk3δ(h̄ck − ∆). (4.104)

Since
∫

dΩk sin2 θk =
∫ 2π

0
dφk

∫ π

0
dθk sin θk sin2 θk =

8π

3
(4.105)

we have

W =
2π

h̄

|g|2|p|2
3π2c3h̄

ω3
∆. (4.106)
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Here

ω∆ =
∆

h̄
(4.107)

is the frequency of the emitted photon.
After obtaining the transition rate we can now compute the life time

of the excited state. Imagine you have an ensemble of identical atoms
all in the excited state |e〉 at time zero. Let Ne(t) be the number of
atoms that remain in the excited state after time t. Clearly we should
have

dNe(t)

dt
= −WNe(t). (4.108)

The solution to the above equation is

Ne(t) = Ne(0)e−Wt (4.109)

which means that the life time of the excited state is

1

τ
= W. (4.110)

Combine this with Eq. (4.106) we conclude

1

τ
=

2π

h̄

|g|2|p|2
3π2c3h̄

ω3
∆. (4.111)

Thus the higher is the energy of the excited state the shorter it lives.
As we discussed earlier in class, spontaneous emission is a consequence
of the atom being disturbed by the quantum zero-point fluctuation of
the EM field.

4.6 Stimulated emission

Now assume that initially the EM field is not in its ground state |{0}〉,
instead it is in state {nkα}. In this case Eq. (4.100) is modified to

W =
2π

h̄

|g|2
L3

∑

kα

(p · ǫkα)2|〈{..., nkα + 1, ...}|a†
kα|{..., nkα, ...}〉|2δ(h̄ωk − ∆).

(4.112)
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Recall that in simple harmonic oscillator

a†|n〉 =
√

n + 1|n〉, (4.113)

as the result Eq. (4.112) gives

W =
2π

h̄

|g|2
L3

∑

kα

ωk(p · ǫkα)2(nkα + 1)δ(h̄ωk − ∆).

(4.114)

Note that for nkα = 0 we recover the formula for spontaneous emission.
If nk 6= 0, the emission rate is enhanced. In particular, if initially the
number nkα of a particular normal mode is larger than that of all other
normal mode (of course h̄ωk must match ∆), it is more likely for the
atom to emit such photon than all others.12 This is as if the presence of
photons in a particular normal mode encourages the atom to emit into
that normal mode. This phenomenon is called “stimulated emission”.

Stimulated emission is the principle of LASING. LASER is the ab-
breviation for light amplification by stimulated emission of radiation.
For a LASER to work, we have to first achieve population inversion,
i.e., having majority of the atoms in the excited state. The first atom
that spontaneously emit creates a photon in a particular k, α state.
This photon stimulate atoms that de-excite later to emit photon into
this same normal mode.

4.7 Absorption

In the absorption process, the atom is initially in the ground state |0〉
and the EM field is initially in the |{nkα}〉 state. In this case Eq. (4.112)
is modified to

W =
2π

h̄

|g|2
L3

∑

kα

(p · ǫkα)2|〈e, {..., nkα − 1, ...}|akα|0, {..., nkα, ...}〉|2δ(h̄ωk − ∆).

(4.115)

Using the fact that in simple harmonic oscillator

a|n〉 =
√

n|n − 1〉 (4.116)

12Of course this is assume the energy h̄ωkα of this photon matches ∆.
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